Geometria II prof. Mauro Spera



Scaricare 17.14 Kb.
12.11.2018
Dimensione del file17.14 Kb.

. – Geometria II

Prof. Mauro Spera


OBIETTIVO DEL CORSO

Il corso si prefigge lo scopo di introdurre ed elaborare i concetti fondamentali della geometria differenziale delle curve e delle superficie, in modo rigoroso ma nello stesso tempo concreto e basato su esempi, allo scopo di sviluppare ulteriormente negli allievi l'intuizione geometrica, la capacità di astrazione e l'abilità di calcolo analitico, anche in vista delle applicazioni nei corsi paralleli e successivi.

Gli argomenti si intendono corredati delle relative dimostrazioni

(o idee di queste), salvo avviso contrario.



PROGRAMMA DEL CORSO

Il programma del corso è interamente contenuto nelle dispense del docente,

scaricabili dalla sua pagina web unicatt.

1- Geometria differenziale delle curve nel piano e nello spazio


Curve parametriche regolari. Lunghezza d'arco. Curve piane: lunghezza d'arco in coordinate polari.
Curve piane: curvatura (con segno), raggio di curvatura e cerchio osculatore e sua caratterizzazione come limite dei cerchi tangenti alla curva in un punto e passanti per un altro punto della curva. Formula generale per la curvatura, formalismo complesso e formalismo "misto". Ricostruzione di una curva piana a partire dalla sua curvatura a meno di un movimento rigido (teorema fondamentale per le curve piane), formula esplicita.

Esempi: rette, coniche e altre curve classiche (cicloide, trattrice, clotoide ecc.). Evoluta ed evolvente. L'evoluta di una trattrice e' una catenaria. L'evoluta di una cicloide e' una cicloide.

Curve spaziali: curvatura, biregolarità , triedro principale,

torsione, formule di Frènet-Sèrret.

Teorema fondamentale (curvatura e torsione caratterizzano una curva

biregolare a meno di uno spostamento rigido), con idea della dimostrazione.

Formule generali per la curvatura e la torsione.

Studio locale di una curva (biregolare) tramite il triedro di Frènet.

Teoria del Dini.

Sfera osculatrice e teorema di de Saint Venant.

Esempi: cubica gobba, eliche, finestra di Viviani...
3. Geometria differenziale delle superficie
Richiami di calcolo vettoriale.

Superficie parametriche regolari. Prima forma fondamentale (metrica).

Carta di Mercator. Proiezione stereografica (e proprietà di quest'ultima di inviare cerchi in cerchi). Metrica sulle superficie di rivoluzione;

la pseudosfera di Beltrami.


L'applicazione di Gauss e relativo operatore di forma.

Seconda forma fondamentale e sue interpretazioni geometriche (teorema di Meusnier; scostamento dal piano tangente)

curvature principali, linee asintotiche, linee di curvatura e teorema di

Rodrigues. Teorema di Eulero. Indicatrice di Dupin.

Curvatura gaussiana e curvatura media e loro formule di calcolo. La seconda forma fondamentale per le superficie di rivoluzione. Curvature principali e loro significato geometrico (curvatura del meridiano e reciproco della grannormale).

Curvatura della pseudosfera. Esempi vari (elicoide, catenoide...).


Formule di Weingarten. Il Theorema Egregium e di Codazzi-Mainardi (schema generale della dimostrazione). Formule varie per la curvatura. Derivata covariante e sua interpretazione geometrica (Levi-Civita). Simboli di Christoffel.

Dimostrazione del Theorema Egregium.

Teorema fondamentale della teoria delle superficie (cenno).

Trasporto parallelo e suo significato geometrico. Formula di Levi-Civita. Trasporto parallelo sulla sfera.

[Prologo: richiami di meccanica analitica. Principio di azione stazionaria ed equazioni di Lagrange, coordinate cicliche e relative grandezze conservate (integrali primi)].

Geodetiche e loro proprietà intrinseche ed estrinseche:

curve autoparallele, cammini critici dei funzionali energia e lunghezza

(se si usa l'ascissa curvilinea, in quest'ultimo caso), curve di curvatura geodetica nulla (def. di curvatura geodetica e suo significato geometrico, con dim.). Deteminazione delle geodetiche in alcuni esempi: piano euclideo,

sfera, piano iperbolico, superficie di rivoluzione (teorema di Clairaut).

Formula di Gauss per i triangoli geodetici. Applicazione alle geometrie non euclidee: sfera, piano proiettivo (ellittico), piano iperbolico.

Teorema di Gauss-Bonnet.
Cenni su: applicazione esponenziale, coordinate normali e polari,

cerchi geodetici, lemma di Gauss e caratterizzazioni intrinseche della curvatura (formula di Bertrand e Puiseux), teorema di Minding.


Esempi, esercizi e complementi vari, tecniche di calcolo:

quadriche, superficie sviluppabili, rigate, superficie minime e loro caratterizzazione variazionale (elicoide, catenoide...).



BIBLIOGRAFIA

M. Abate - F. Tovena, Curve e superfici, Springer, Milano, 2006.

M. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1976.

A. Gray - E. Abbena - S. Salamon, Modern Differential Geometry of Curves and Surfaces with Mathematica, CRC Press, Boca Raton, 2006.

D. Hilbert - S. Cohn-Vossen, Geometria intuitiva, Boringhieri, Torino, 1972.

M. Lipschutz, Geometria differenziale Schaum, Etas Libri, 1984.

A. Pressley, Elementary Differential Geometry, UTM Springer, New York, 2000.

E. Sernesi, Geometria 2, Bollati Boringhieri, Torino, 1994.

METODO DI VALUTAZIONE

Esame scritto e orale.



AVVERTENZE

Il docente riceve gli studenti nel proprio studio nei giorni di lezione e su appuntamento.
elenco: upl -> proguc
proguc -> Metodi e tecniche dei test (con laboratorio) Prof. Stefania Balzarotti; Prof. Francesco De Ambrogi; Prof. Emanuela Bonelli
proguc -> Metodi e tecniche dei test Prof ssa Eleonora Maino
proguc -> Programma del corso I semestre “La lirica di Osip Mandel’štam. Anni Trenta”. II semestre “L’opera di A. P. Čechov”. Bibliografia
proguc -> Lingua russa 3 (Lingua e comunicazione professionale) Prof. Anna Bonola
proguc -> Lingua russa 3 (Lingua e comunicazione professionale) Prof. Anna Bonola
proguc -> Prof. Serena Vitale; Prof. Maurizia Calusio 1
proguc -> Diritto penale I gr. A-k: Prof. Gabrio Forti; Gr. L-z: Prof. Marta Bertolino
proguc -> Diritto civile I gr. A-k: Mauro Orlandi; Gr. L-z: Prof. Andrea Nicolussi
proguc -> Linguistica generale Prof. Giovanni Gobber
proguc -> Diritto penale I gr. A-k : Prof. Gabrio Forti; Gr. L-z : Marta Bertolino


Condividi con i tuoi amici:


©astratto.info 2019
invia messaggio

    Pagina principale